[Total No. of Questions - 9] [Total No. of Printed Pages - 3] (2066)

16059(J) = -1.6

B. Tech 4th Semester Examination

Theory of Automata Computation (NS)

IT-223

Time: 3 Hours

Max. Marks: 100

The candidates shall limit their answers precisely within the answerbook (40 pages) issued to them and no supplementary/continuation sheet will be issued.

Note: Attempt five questions in all, by selecting one question from each of sections A, B, C & D. Question no. 9 in section E is compulsory.

SECTION - A

- Design an NFA that accepts all inputs with a triple letter, like 111,000. (20)
- 2. (a) Design NDFA with five states for {ababⁿ: $n \ge 0$ } U{abaⁿ: $n \ge 0$ }. (10)
 - (b) Design a Moore and Mealy machine for input alphabet $\Sigma = \{0, 1\}$ and output alphabet $\Sigma = \{0, 1\}$. The transition table is given below:

Q Σ	0	1	O/P
q ₀	q ₀	q_2	0
q ₁	q_1	q ₀	0
q ₂	q_2	q ₁	0

(10)

[P.T.O.]

2 16059 SECTION - B

3. (a) Give properties and limitations of FSM. (10)

(b) State Myhill-Nerode relations. (10)

(a) Construct transition graph for given regular expression:
 r = a(a+b)* ab.

(8)

(b) Show an finite automata that accepts words of odd length. (12)

SECTION - C

- 5. (a) Define context free grammar and context sensitive grammar. (8)
 - (b) Convert the following CFG with unit productions into CNF.

 $S \rightarrow X$

 $X \rightarrow Z$

Z→aa (12)

- 6. (a) Construct a push down automata accepting the string {aⁿbⁿcⁿ}. (10)
 - (b) Convert S→abSb|aa into GNF.

SECTION - D

7. What is recursively enumerable language? Give example.

(20)

(10)

- 3. (a) What is a linear bounded automata? What are end markers? What is type-O- grammar for Turing machine? (12)
 - (b) Discuss post correspondence problem. (8)

SECTION - C (COMPULSORY)

- 9. (i) What do you mean by equivalence class?
 - (ii) What is DFA? Show an example.
 - (iii) Prove that if $\delta(q, x) = \delta(q, y)$, then $\delta(q, xz) = \delta(q, yz)$ for all strings z in Σ^+ .
 - (iv) Find a regular expression R over $\Sigma\{a, b\}$ for L = $\{a, ab, ab^2, ...\}$.
 - (v) Write the regular expression for the language. $L = \{ w \mid n_{a(W)} \text{ mod } 3 = 0, \ w \ \epsilon \ (a, \ b)^* \} \ R \text{ over } S = \{ a, \ b \}$
 - (vi) Explain significance of My-Hil-Nerode theroem.
 - (vii) Design a CFG for generating string having any combination of 0's and 1's except null string.
 - (viii) What is a non-deterministic pushdown automata?
 - (ix) What is the halting problem?
 - (x) Design the Mealy machine to get 1's complement of a given binary number. (10×2=20)